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Convergence Results For Invariant Curve 
Algorithms 

By M. van Veldhuizen 

Abstract. In this paper a convergence result for the algorithm described by Kevrekidis 
et al. [7] is given. It is shown that this algorithm for the approximation of an invariant 
curve converges provided the curve is attracting. The approximation error is estimated. 
Numerical examples for three different algorithms in this class and a closely related one 
illustrate the theory. 

Introduction. In this paper we consider a map 4) from Rd and Rd with the 
property that D-y C -y for a closed curve -y. This invariant curve -Y is approximated 
using an algorithm essentially due to Kevrekidis et al. [7]. The convergence of this 
algorithm under suitable conditions is the main topic of this paper. 

Invariant curves and invariant manifolds arise in the study of oscillatory motion 
in ordinary differential equations. A typical example is given by 

(1.1) dx - g(x) + f (t), dt 
where x(t) E Rd, and where f is a smooth periodic map with period p. Under 
reasonable conditions the differential equation (1.1) possesses a unique solution 
x(t; xo) on [0, p] with prescribed vector x0 at t = 0. The Poincare map P with time 
step p is defined by 

(1.2) P: y - X(p;y). 

Thus, the map P maps (part of) Rd to Rd. The Poincare map describes how Rd is 
transformed by the differential equation (1.1) in one period p of the periodic forcing 
term f. A fixed point of the Poincare map P corresponds to a periodic solution. 
In some instances the oscillatory behavior of solutions of (1.1) is not periodic, but 
quasi-periodic. This may happen if the Poincare map possesses an invariant closed 
curve -y. If -y is a closed smooth invariant curve of P, then the restriction PI, of 
the map P to -y makes sense. Observe that the set of all points 

(1.3) {x(t;y) I t E [0,p],y E ty} 

is a torus. The restriction PI, corresponds to the restriction of the differential 
equation (1.1) to this torus. Since differential equations on the torus are well 
understood, this results in a rather complete description of the map Ply. In par- 
ticular, under reasonable assumptions, PI, is a homeomorphism from the curve -y 
onto itself. Since -y is topologically a circle, one calls PI, the circle map. Such 
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homeomorphic maps from the circle onto itself are characterized by the rotation 
number. Roughly speaking, the rotation number of a circle map describes a kind of 
average rotation angle characteristic for the circle map. A rational rotation number 
corresponds to a fixed point of some integer power of PI,, i.e., a periodic solution 
of (1.1). An irrational rotation number corresponds to quasi-periodic solutions of 
(1.1). One should realize that the rotation number depends continuously on pa- 
rameters in the Poincare map, but not necessarily in a differentiable way. A nice 
mathematical description of these results and many related results may be found 
in Guckenheimer and Holmes [5]. The paper by Levinson [9] is still a good intro- 
duction to the existence theory for invariant curves. Hale [6] gives more general 
results extending many of the techniques found in Levinson's paper. 

Before going on, it may be good to realize what an invariant curve may be 
in terms of a differential equation like (1.1). A good example is the periodically 
forced Van der Pol equation; asymptotic results are described in Guckenheimer and 
Holmes [5], and sketches of the invariant curves are given in Thoulouze-Pratt [13] 
and [15]. For the Van der Pol equation the invariant curve is attracting with a source 
(repellent periodic solution) in the interior. For many parameter values the curve 
is smooth and convex. For a region in parameter space the curve contains a sink 
and a saddle. That is, the invariant curve is a heteroclinic orbit. Let Ysaddle, Ysink 

denote the saddle and the sink, respectively. For the heteroclinic orbit each curve 
segment between the saddle and the sink corresponds to a solution of the recurrence 
equation Yo?1 = Pyi on the set of all integers with boundary conditions at +ix 

given by Ysaddle and Ysink, respectively. Thus, an invariant curve may contain fixed 
points and orbits of differential equations on the real line. 

Clearly, invariant curves and the restriction of the differential equation to the 
invariant curve play a part in the analysis of ordinary differential equations. In 
our terminology, the map 1 is just the Poincare map P. However, the restriction 
in the choice of 4 as a Poincare map is not necessary. In fact, many recurrence 
relations give rise to invariant curves, cf. the examples in Koqak [8]. Aronson et al. 
[1] investigate the delayed logistic map in some detail. We use this map in Section 
3. 

In many instances an invariant curve cannot be obtained by analytic means. In 
some instances a good approximation may be obtained by averaging techniques, 
but even then numerical computations are often indispensable. An example of 
an invariant curve and a mixed asymptotic-numerical approximation procedure is 
given in Bouc, Defilippi and looss [2]. Numerical processes are already described in 
Thoulouze-Pratt and Jean [14], Thoulouze-Pratt [13]. However, the process men- 
tioned in [14] may fail for problems with an almost rational rotation number. The 
process mentioned in [13] approximates the parametrized invariant curve by a trun- 
cated Fourier series by minimizing the distance between the original and the image 
under <D. This is very much like the process alluded to at the end of [15]. This pro- 
cess may converge to a spurious solution, even for an almost correct initial curve. 
The processes described by Chan [3] are based on a collocation approximation of 
the invariant curve. In one process the curve is parametrized such that the circle 
map becomes a rigid rotation. The other process relaxes this a bit. No convergence 
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proofs are available, and the numerical results for these methods are not encour- 
aging. The method described by Kevrekidis et al. [7] approximates the invariant 
curve by a polygon-like curve. Finally, in [15] an invariant curve is approximated 
by a polygon without some of the restrictions required in the Kevrekidis algorithm. 
In [15] there is also some discussion of algorithmic and programming details. In 
view of the fact that some algorithms may converge to wrong solutions, it is de- 
sirable to have algorithms with proven convergence under suitable conditions. The 
Kevrekidis algorithms (described in Section 2) seem a good candidate for investi- 
gating the convergence properties. Their formulation and implementation does not 
depend on the rotation number of the circle map corresponding to the invariant 
curve to be approximated. So the rationality or irrationality of the rotation number 
does not interfere with the approximating process. For attractive invariant curves 
we may use a contraction argument. In this way we mimic the theory of Levinson [9] 
for a discretized problem. An approach via the Newton method is not feasible: the 
corresponding map is only piecewise differentiable. The approach presented here 
has a disadvantage. We can only deal with attractive invariant curves or repellent 
ones. For curves of mixed stability type the analysis fails. A dichotomy argument 
as in Hale [6] seems necessary, but it is far from clear how to do it. 

In this paper we analyze the algorithm of Kevrekidis et al. [7]. We are able to 
show that the simplest method converges under fairly general conditions. Higher- 
order methods require special assumptions. This theory is given in Section 2. In 
Section 3 we give some examples. Four methods are described in some detail. A 
simple test problem is analyzed and used in the numerical experiments. And the 
four methods are applied to the delayed-logistic map, cf. Aronson et al. [1]. 

Details on the implementation are given in [15] for a slightly different method. 
The numerical approximation of the rotation number is investigated to some extent 
in [16]. 

2. Convergence Analysis. In this section we describe algorithms for the 
numerical approximation of an invariant curve of a map 'D. In all instances we 
assume that the restriction of TD to -y is a homeomorphism. First, we describe 
two nonlinear coordinate transformations, and we give a simple property. One 
of these coordinate transformations is the basis for the algorithms. The main 
result of this section is the convergence analysis of the algorithms for an attractive 
invariant curve. For the algorithm based on piecewise linear interpolation we obtain 
a satisfactory convergence result. For higher-order methods we obtain convergence 
results under some restrictions. The results of the discussion are summarized in 
Theorems 2.6, 2.7, and 2.9 below. 

Let the simple closed curve -y e Rd be an invariant curve of the map (. In R2 

the curve -y is a Jordan curve. The approximation of the curve -y will be based 
on a polygon in Rd. A polygon is completely determined by its vertices. The N 
vertices, vectors in Rd, are denoted by X1,X2,... ,XN, and the polygon p({x%}IN1) 
is obtained as the set of line segments [X1, X2], [X2, X3], [XN-1, XN] and [XN, X1]. 

For the analysis we need a different coordinate system. Since it is so fundamental, 
we introduce this nonlinear coordinate transformation first. 
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Assumption 2.1 (tubular coordinates). Any vector x in an annular neighborhood 
of -a E Ad can be written as 

(2.1) x = u(T) + Z(4)0 

where r E [0,2wr), ( E lRd-, and Z(r) is a d x (d- 1) matrix with orthonormal 
column vectors. In addition, all columns of Z(r) are orthogonal to the vector d (T). 

We may even assume that the length of the vector du is independent of T. 
Let us consider this assumption in some detail. Clearly, (2.1) defines a nonlinear 

coordinate transformation x -- (r, (). In the new coordinates the invariant curve is 
given by T -- (r, 0), corresponding to the parametrization r -+ u(r) in the original 
coordinates. The orthogonality of the augmented matrix Z implies that the vector 
( measures the deviation from the curve in a hyperplane orthogonal to the tangent 
vector to -y in u(r). In R2 the matrix Z reduces to the normal vector to the curve. 
In the sequel we mean by the distance d(x; a) of a vector x to -y the Euclidean norm 

U11i. 
The nonlinear coordinate transformation is not always well defined. However, 

for important classes of problems, Hale [6] proves that the transformation is well 
defined, i.e., in an annular neighborhood of the simple closed curve -y the transfor- 
mation is a smooth invertible map. See also Levinson [9], who may have been the 
first to use a coordinate system like (2.1). For instance, the transformation (2.1) 
is well defined for problems like (1.1) in a neighborhood of f = 0, provided the 
autonomous system x' = g(x) has a stable periodic solution. 

In R2 the nonlinear transformation (2.1) requires only a point in the interior of 
the Jordan curve y. In Rd, d > 2, one needs some knowledge about the position 
of the one-dimensional manifold -y in d-space. As rigorously proved by Hale [6], for 
a simple closed curve ay there always exists a vector not in the span of the set of 
all tangent vectors to -y (the idea goes back to Levinson [9]). For example, if the 
curve ^y in R3 is in the x, y-plane, then the z-axis is not in the span of all tangent 
vectors to 'y. Hale's result says that this situation is typical. In practice one might 
use asymptotic information for finding a good candidate for the vector not in the 
span of all tangent vectors. If -y is parametrized by r -f u(i), we assign to a vector 
x in a neighborhood of -y the pair (T, x - u (T)) = (r, Z(ir) ), with r chosen such that 
x - u(T) is orthogonal to the tangent vector to -y in r. The mathematical details of 
this construction are given by Hale [6]. By the attractivity of the invariant curve 
,-y we mean the existence of a constant 0 < t, < 1 such that for all x in an annular 
neighborhood of 

(2.2) d (?x; y) < d (x;). 

The attractivity of the curve -a is expressed by means of the tubular coordinates 
introduced above. Tubular coordinates are essential in describing an important 
property of the curve -y. But for the algorithm we need another coordinate system. 
We assume that the invariant curve -y looks very much like a curve in a plane 
R. Since we need this plane in the algorithm, we may as well assume that R is 
spanned by the first two coordinate axes in Rd. We can always achieve this by a 
linear transformation. Henceforth we assume for some xc E R the existence of the 
following nonlinear coordinate transformation. 
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Assumption 2.2 (radial coordinates). In an annular neighborhood of the curve y 
the nonlinear coordinate transformation 

(2.3) (0, e, n) -f xc + (r(0) + e)(cos(0), sin(0), 0)T + (0, 0, g(0) + r)T 

is a smooth invertible map, and r(O) > 0. In particular, the Jacobian matrix of the 

transforming map should be invertible with uniformly bounded inverse along 'y. 
Under this assumption the curve -y is described by 

(2.4) -y: 0 E [0, 2w) - '-y(0) = xc + (r(0) cos(0), r(0) sin(0), (O))T. 

If d = 2 the g-coordinate in (2.3), (2.4) is absent, and the formulation simplifies. 
So the Euclidean projection of -y onto R is a star-shaped curve with respect to xc 
in its interior. Not all smooth simple curves in Rd, or even R2, may be represented 
in this way. The restriction is motivated by the algorithm to be presented below. 
These coordinates are very much like polar coordinates centered at xc. 

Clearly, Assumption 2.2 implies Assumption 2.1, showing that we are somewhat 
restrictive. In practice this is not too serious a limitation. Many invariant curves 
arise from a Hopf bifurcation. The curve in R4 approximated by Bouc et al. [2] 
originates in a Hopf bifurcation. In such a case the essential action takes place in the 
plane determined by the eigenvectors (of the Jacobian matrix of '1) corresponding 
to the two eigenvalues crossing the imaginary axis. This gives detailed asymptotic 
information about the plane R. 

In radial coordinates the distance drad(x; -Y) from x = (0, e, ra) to -Y is given by the 
Euclidean length of the vector (e, ri). We compare this distance with the distance 
in tubular coordinates. 

LEMMA 2.3. There exists a constant Cd > 1 such that for all x in an annular 
neighborhood of a, we have 

(2.5) d(x; y) < drad (x; Y) < Cd d(x;v) 

The constant Cd depends on the position of xc in the interior of the projection of 
'y onto R and the size of the annular neighborhood. 

Proof. The first inequality is obvious. The second inequality follows from the 
uniform boundedness of the inverse Jacobian matrix of the coordinate transforma- 
tion along -y. See also Figure 3.2. El 

Remark 2.4. Observe that the value of Cd depends only on the properties of y 
and the radial coordinates. For example, if we use 4(P instead of 4) we find the same 
value for Cd. 

We now return to the polygon. The images under 4) of the vertices xi form a 
polygon p({Ixi}N ). For an attracting curve -y we expect that p({Txi}N l) is 
a better approximation than p({xi}ly1). As in [15] we project the old polygon 

on the new polygon p({4)xi}ly1) by means of a projection. Here we use 
interpolation. 

The combination of 4) (considered as a map acting on the vertices of p({xi}N l)) 
and the projection will be denoted by K. We describe K in the case d = 2. Let xi 
be a vertex of p({xi}f 1). Determine the angle 0i such that 

Xi = xc + I1xi - xcII(cos(0i),sin(0i))T. 
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Assume that the point xC is also in the interior of the polygon p({4fx}N ) This 
is so if the polygon p({xi}f'l1) is close enough to -y. The vertices of the polygon 
p({4>xi}N l) may then be written in this coordinate system as 

(2.6) 4?xj = XC + tj (cos(O,), sin(',))T. 

Assume Oi E [0j, Oj+I], taking into account the identification of 2ir and 0. Define 
the ith vertex of K = K1 as the intersection of the half-line in the direction Oi and 
the line segment [4'xj, 4'xj+1], 

(2.7) K1xi = {x I x = xC + r(cos(Oi), sin(Oi))T, r > O} n [1xi, 4xj+il]. 

See also Figure 2.1. In Rd. d> 2, we intersect with the hyperplane determined by 
the direction Oi in R, i.e., a half-line through xc, and the orthogonal complement 
of R. In this method the approximation to -y is a polygon. 

03 4X2 0il 

4~~~~~ 

FIGURE 2.1 

Construction of K1 for N = 5. The spokes are indicated by the dashed lines and the angles 9i. 
The polygon with its vertices on the spokes is indicated by the heavy lines. The vertex (open dot) 
xi lies on the spoke indicated by Ai The polygon of the images is shown in dotted lines. So are 
the half-lines determined by the images taxi. The vertices of the new polygon, the points Klx, 
are indicated by the heavy dots. The new polygon is not shown. 

Different maps K are possible and useful. We might interpolate in radial coordi- 
nates with abscissae on the 0-axis. Then define the ith vertex Kxi of the polygon 
Kp({xi~}N l) by interpolation by the operator II in the point hi. Thus we interpo- 
late with values in the abscissae Oj. We consider II as a projection operator in the 
Banach space of continuous functions on [0, 2ir) equipped with the usual supremum 
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norm of functions. The norm in the Banach space is denoted by I I. The norm of 
11 in the Banach space of continuous functions on [0, 2ir) is denoted by III}; III} > 1 
may depend strongly on the distribution of the abscissae Oj and N. By Il-y we 
mean interpolation of the curve -y itself in the abscissae Oj. We assume Ilkt -+ -y 
for N - - oo. The approximating polygon is defined as the solution p({}QN 1) (if 
any) of the set of equations p({xi}L 1) = p({Kxi}1 l). The approximation to -y is 
then given by Ilp({x}-N 1). All this carries over directly to the case d > 2. With 
piecewise linear interpolation and d = 2 we recover the scheme by Kevrekidis et al. 
[7]. See also Figure 2.2. 

The map K1 may be viewed as composition of 1 and some kind of nonlinear 
interpolation. So the above framework seems not applicable, but see Remark 2.10. 

In order to simplify the discussion and the notation, we shall continue in R2. At 
appropriate places the modifications required for Rd, d > 2, will be pointed out. 

The interpolation is well defined for polygons sufficiently close to -y with xc in 
the interior of -y (or its projection on R). Consider a polygon such that the Oi 
form a strictly monotone sequence (after lifting them to the real line). Since the 
restriction of 1 to -y is a homeomorphism by assumption, the images 4u(Oi) are 
again nicely ordered along -y. So, if the vertices are close enough to -y, then the 
images of the vertices are also in order along -y. Thus the position of xi is uniquely 
determined in relation to the Jbxj. 

Observe that the interpolation process may fail to interpolate in some subinter- 
vals, while doing more than one interpolation in another one. It all depends on the 
distribution of the Oj in relation to the Oi. Hence, some vertices may play a more 
prominent role in the process than others. 

Kevrekidis et al. [7] suggest Newton iteration for solving the equations. This 
might work in many instances, but the map K is not necessarily differentiable. 
Consider interpolation by continuous, not necessarily differentiable piecewise poly- 
nomials. A loss of differentiability of K occurs if small variations in the vertex xj 
cause Oj to cross the value Oi. Then, for one xj we must interpolate in [0j, Oj+1], 
and for slightly different value we must interpolate in [Oj-i, s]. Clearly, this results 
in a discontinuity in the derivative of K. Therefore we restrict ourselves to stable 
invariant curves, and we solve the equation p({xi}N 1) = p({Kxi}N_') by iteration. 

A basic step of the algorithm consists of three parts: compute the images of the 
vertices of the current polygonal approximation p({xi}i 1); project the old vertices 
onto the polygon p({4xi }IN 1) and define a new polygon by taking the projections of 
the old vertices as the vertices. In view of the definition of the map K, it is obvious 
that the vertices of the successive polygonal approximations are of the form 

x XC + r+(j) (cos i(0), sin(iu) ), 

where the angle Oi is independent of the number of iterations. That is, the angles 
0 are determined by the initial guess only. The half-lines determined by these 
angles look like spokes in a wheel. The relative position of these spokes determines 
to a large extent the success of the method. In a practical algorithm the relative 
position should be determined in an adaptive manner. In the convergence analysis 
we shall consider the case of N fixed spokes nicely distributed in all directions. The 
directions given by the _j, cf. (2.6), do depend on the iteration steps. This means 
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that the norm of II may vary with varying interpolation abscissae. In a sufficiently 
small annular neighborhood of -y the variations in Oj are bounded. Henceforth we 
use the maximum of the norm of II over all such possible sets of interpolation 
abscissae. We denote it by Ilmax All this holds true almost literally for the 
algorithm in Rd, d > 2. 

We want to apply the Brouwer fixed-point theorem. To that end, we start with 
a lemma. 

03 0~~~~~2 

0~~~~~~~ 

FIGURE 2.2 

Construction of K for N = 5 and piecewise linear interpolation. The spokes are indicated by 
the dashed lines and the angles Hi The polygon with its vertices on the spokes is indicated by the 
heavy lines. The vertex (open dot) xi lies on the spoke indicated by Hi The curve flp({bxi}N 1) 
is indicated by a dotted line. So are the half-lines determined by the directions 9i. The vertices 
of the new polygon, the points Kxi, are indicated by the heavy dots. The new polygon is not 
shown. See also Figure 2.1. 

LEMMA 2.5. For p({xi}N l) close enough to My, 

(2.8) drad(Kxi; -7) ? ECcdlIHlm imaxN d(xi; ?) + lb - 7I 

Proof. The radial distance between Kxi and My is estimated by 

drad(Kxi; a) ? IlIP({?xi}f-1) -Ibi| + |IH-a -II 
The latter term is the norm of the interpolation error. The former may be estimated 
as, cf. Lemma 2.3, 

Iflp({?xi}N 1) - l-1 ? 
III} max drad((Ixi; 7) 

? 
|IJI|Cdmax d(?xi;y). 

By using the attractivity of -y and the- definition of I IIm, the result is obtained. 0 
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We shall determine a convex set mapped by K into itself. Consider a polygon 
p({xi}N l1) and assume that the radial distance of the vertices to ,- is at most 6 > 0. 
We want to show that the iterates of p({xij} l) have the same property, provided 
we are close to Iy with N sufficiently large. Since Kxi and xi belong to the same 
spoke, and since the radial distance of Kxi to -y is estimated by Lemma 2.5, the 
condition 

(2.9) 6 < rcCd I In6 + 11I -Y 

suffices. 

THEOREM 2.6. If IcCdjf| < 1 and if the interpolation error is sufficiently 
small, then the equation p({xi}Lv 1) = p({Kxij}N l) has at least one solution in the 
closure of an annular neighborhood of -y. The radial distance from points in this 
neighborhood to -y is bounded by 

(2.10) =1- IdIIIm 

Proof. Under the assumptions of the theorem, condition (2.9) is satisfied. Thus, 
the map K consists of N interrelated maps from line segments on spokes to line 
segments on spokes. These line segments may be viewed as an N-cube in RN. 

Thus K maps an N-cube into itself. In radial coordinates, the smallest possible 
neighborhood is contained in the one with diameter 6 as given by (2.10). In the 
general case, we have a (d - 1)N-cube, but the arguments are identical. Clearly, 
K is continuous. Hence, by the Brouwer fixed-point theorem there is at least one 
solution for the equations p({xi}lNl) = p({Kxi}N l). O 

THEOREM 2.7. In addition to the assumptions of Theorem 2.6, let H be the 
piecewise linear interpolation operator (on the abscissae Oj), and let the interpola- 
tion error be sufficiently small. Then the equation has a unique solution p({Xi}$f 1) 
and the sequence p({xj}jv 1),p({Kxi}lf 1), p({K'xij}t1),.. . converges to it with 
a convergence factor < I' where CdrK < s' < 1. 

Proof. Locally, in a neighborhood of -y, we have by Lemma 2.3 

drad (?X; Y) < Cdi drad (X; aY) 

In radial coordinates this property implies that the (e, r)-component of the deriva- 
tive of 1 in the direction (e, ri), cf. (2.3), for points on -y is bounded by Cd'c < 1. 
Partition the Jacobian matrix Jo, (x) of 1 (in radial coordinates) according to 0 
(first part of partitioning) and (e, r) (second part), 

(2.11) ?( ) 
(~~~~J2,1 (X) J2,2 (X)) 

Then also 11J2,2(X)II < r.Cd for all x E -ye 
Let p({xi }N l) be a solution as given by Theorem 2.6. Consider 41xj for some 

vertex xj close to the vertex Xj. Then 

1 

4)x, - (tj =10 J.(tj + sAxj)Axj ds 
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with L\xj = xj- Xj. By continuity and by the estimate for IIJ2,211, there is an E > 0 
such that the radial component of 1xj - x-j satisfies the estimate 

liradial component(4xj - bj)II ?< (IcCd + 6)IIzAXj II, 

where E -- 0 for L\x3 -+ 0 and Xj -4 y. Thus, if the interpolation error is sufficiently 
small, there is an annular neighborhood of -y with 

liradial component(4DX3 - 3))II ? <_' "11X I. 

Since we use piecewise linear interpolation, the distance from Kxi obtained by 
interpolation of 4Txj and 1xj+1 has a radial distance to Kti = xi of at most 

rI'maxj LI/xjII. We must take the maximum over all possible differences, because 
Kxi and Kxi- may use different abscissae in the interpolation stage. Thus, 

max IIKxj - Kx-,II < r,'max IIZxj I. 
Z ~~~~~~~~~3 

Hence K is a contraction. The assertions now follow immediately from the con- 
traction principle. E 

This result says that the method with piecewise linear interpolation has a unique 
solution provided the curve -y is an attractive invariant curve in the radial coordinate 
system. Of course, Remark 2.4 is rather relevant if r, is not so small or if Cd is 
large. 

The result is based on a simple property of line segments, i.e., piecewise linear 
interpolation. For more complicated interpolation schemes there still is at least one 
solution (if IIHII.m is not too large). But if we argue as in the proof of Theorem 
2.7, we must compare two interpolation results, one for xi, one for Kx, obtained 
on different abscissae with data of which only components in radial directions have 
known bounds. Without additional assumptions about the interpolation scheme 
or the abscissae Oj, no results seem possible. As a way out, we make a simple 
assumption. 

Assumption 2.8. In a sufficiently small annular neighborhood of -Y we have 

(2.12) 114kx - 4Y1II < kicIx - yll 

for x, y vectors with the same 0-coordinate (on the same half-line centered in xc). 
This assumption limits the size of the component J2,1 in the above partitioned 

Jacobian matrix (2.11). Equivalently, it restricts the action of 41 parallel to -y. 
Clearly, i- > r,. See Section 3 for an example in which ic, r' can be computed 
explicitly. With this restricting assumption we have the following result. 

THEOREM 2.9. Under the above assumptions, in particular Assumption 2.8, 
let p({xi}IN 1) belong to a sufficiently small annular neighborhood of ay. Let 1 be 
the operator defined by piecewise linear interpolation. Let KIII m < 1. Then the se- 

quence p({xt}iN1), p({Kx}IN 1), p({fK2X,}IN ),... converges to a unique solution 

p( {Xt }f'f1) of the equation p(f {x}fN 1) = p(f{Kxi}ff 1). The discretization error in 
the vertices satisfies the estimate 

(2.13) maxN d(- vY) < 1 l| I i=1 .. IN1KI M. 
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Proof. Consider two polygons p({xi}f Y),p({yi}^ 1) in a sufficiently small an- 
nular neighborhood of 'y. Then 

Kxi - Kyj || < H| I jp({4xi }I'1) -p } | 

< IlI max (Dxj - Iyejj ? jTjkmax jxj - yjj 
3 3 

Observe that the ith vertex of the polygon Kp{by(Oi) }t-L is given by (Hl-y)(Oi). 
Hence, for any vertex xi of a solution p({}N l) we have 

i- 'j(Oi)JI < JJKXi - (H)(Oi)Jj + 11(H'-)(0i) - -i)Jl 
< k-iHm max Xj - -y(Oj)JJ + IH1y - -yl 

From these estimates the result is easily obtained. El 
Remark 2.10. With some simple modifications the theory and the results carry 

over to the method described by the map K1, cf. (2.7). In this case too, we may 
view K1 as the composition of 41 (acting on vertices of polygons) and a projection. 
In this instance the projection is nonlinear. It hardly matters. We shall consider the 
relevant parts of the proofs of this section. In Lemma 2.6 one should interpret the 
interpolation error as the distance in radial coordinates between -y and the chord 
connecting -y(0) and y(Oj+?1). This leads directly to the estimate 

drad (Kxi; a) < t? i- max d(xi; Ay) + W1I-y -/ 
i=1..,N 

Similarly, the statements of Theorem 2.7 and Theorem 2.9 are easily seen to hold 
true. The linearity of H is not really used. 

Remark 2.11. If the restriction of 41 to -y has fixed points (an even number), 
then these points divide the curve in heteroclinic orbits between successive fixed 
points. Suppose we know these fixed points, and we use them as vertices in the 
polygon. Let such a vertex, a fixed point, correspond to the radial coordinate Oi. 
Since it is a fixed point of 4X, we have Oi = Oi. Since interpolation of a function 
in an abscissa returns the function value in that abscissa, we see that the fixed 
point is also a fixed vertex of the sequence of polygons. As a consequence, we see 
that we may restrict ourselves to each heteroclinic orbit separately, provided the 
interpolation process can be restricted to each of the subintervals separately. This 
is so for piecewise linear interpolation. Then the above theory also applies, since it 
does not mix up the various heteroclinic orbits. Consequently, the algorithms of this 
section may be useful in approximating heteroclinic orbits in ordinary differential 
equations without any problems (truncation of the integration interval, asymptotic 
matching) at ?oo. 

3. Examples. In this section we describe a few special cases of the algorithms 
defined in Section 2. We describe some properties, and we give some examples. 
The notation of Section 2 is used in this section. 

Method 3.1. This is the method described in Section 2, with H = IH1 the piecewise 
linear interpolation operator. That is, between two abscissae Oj and Oj+,, cf. (2.6), 
we use interpolation by a polynomial of degree < 1. The corresponding operator 
satisfies HiI1m = 1 for all subdivisions of the interval [0, 2Xr). Hence, for sufficiently 
many vertices, and if i.Cd < 1, there is a unique solution close to -y, cf. Theorem 
2.7. The approximation error is bounded by (2.10), i.e., O(maxj Ij' - j+1'2). 
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This method has a simple property if -y is a circle and if xc is in the center 
of the circle. The statement is a consequence of Theorem 2.7 and is valid for all 
interpolatory methods of Section 2. 

LEMMA 3.2. Let the attracting invariant curve -y be a circle. Let xc be the 
center of this circle. Then Method 3.1 is exact (approximation = 'Y), and the ver- 
tices converge to the vertices of the solution with a convergence factor given by the 
attraction factor r,. 

Proof. Clearly, Cd = 1. Now apply Theorem 2.7 and the estimate (2.10). 5 
Method 3.3. This is the method defined by the operator K1, cf. (2.7). In this 

method the curve is approximated by the polygon itself. In view of Remark 2.10 
the theoretical results for this method are very much like the results for Method 
3.1. The error in the vertices of a solution is proportional to the maximum of the 
squares of the radial distances between -y and chords passing through -Y(Oj), IY(Oj+ 1), 
cf. Remark 2.10. That is, the method is a second-order method. However, the 
method is not exact if -y is a circle. 

The Method 3.3 has a simple property too. It is not related to accuracy, but 
rather to the position of the approximating polygon relative to -y. The property 
holds true in R2 for convex curves -y. The precise formulation is as follows. 

LEMMA 3.4. Let p({xt}J'L1) be a polygon approximating the convex invariant 
Jordan curve -y. Let the exterior of -y be mapped into the exterior, and the interior 
into the interior. Let every vertex of p({xi}i l1) belong to a line segment [1x3, >XkI. 

Then p({xf}f l1) is in the interior of -y or on y. 

Proof. Assume the contrary, and let x% be in the exterior Q of -y. Then xt belongs 
to a line segment of images of vertices, xt e [4Dx3, Ixk]. Observe that images in the 
exterior must have original (vertices) in the exterior. The vertices are separated in 
two disjoint sets, those in Q and those not in Q. The map 4I acts on each of these 
two sets separately. Then, since xi belongs to the exterior Q, the convexity of aY 

implies 

d(x,;-y) < max d(x,;y). 
XEQ 

The same estimate holds true for all vertices in the exterior. Hence, 

max d(x,; ) < mx (ma xx; Vy). 

On the other hand, the attractivity of -a and the property 4DQ C Q imply that the 
right-hand side is smaller than the left-hand side. This is a contradiction. So the 
assumption was false. That is, there is no vertex of the polygon in the exterior of 

For Poincare maps of differential equations the assumption about the behavior 
of 'f in relation to the exterior and the interior of -y follows from a unique solvability 
assumption for the ordinary differential equation in a neighborhood of the invariant 
torus, cf. (1.3). 

For the Method 3.3 we are able to show that the approximation error does 
not necessarily admit an asymptotic expansion, not even for regularly distributed 
abscissae O.. We make this statement more precise in an example. 
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Example 3.5. Let 1' be given in polar coordinates by 

(3.1) 4(or, 0) = (1 + c.(r -1), 0 + al) 
with 0 < r. < 1 and a E (0, 2X]. Thus the map '1 has the unit circle as invariant 
circle. This invariant circle is attractive and the circle map j1, is a rigid rotation 
over the angle a. The rotation number of the circle map is a/27r. Apply the Method 
3.3 with center xc = 0. The initial polygon is chosen as a regular polygon with N 
vertices also centered at the origin. In this simple case the solution of the equation 

1) = p({Kxj}jiN1) can be computed explicitly. A special case occurs if 
a = 27rk/N for integer k. In this special case the solution is a regular polygon with 
vertices on the unit circle. So the vertices are exact in this special case. 

In the generic case, let Vk = a mod 2. Then the radius rN of a vertex of the 
solution (the solution is a regular polygon) is easily computed, making use of ele- 
mentary geometry. The law of sines can be used advantageously. The result is 

N (1-K) cos N 
N cos ( - X) - cos r 

Clearly, rN < 1, in agreement with Lemma 3.4. Also, rN = 1 + 0(1/N2), in 
agreement with (2.10). 

The example also indicates that an asymptotic expansion of the error in powers 
of 1/N does not exist. To see why, let a = 27r , with p,q e N and q a prime 
number. Then O' = ,/r is equal to 

?1/) = N (~k - entier (k )) k = Nmodq. 

Thus, A' equals a periodic function in N divided by N. This contradicts an asymp- 
totic expansion of X and hence of rN in powers of 1/N. Thus, Richardson extrap- 
olation seems not applicable. 

Definition 3.6. Let 0j, j = 1,... ,N, be abscissae on [0,27r) with 0j < O+1 for 
all j. We identify 0 and 27r, thus transforming the interval to a circle. On this circle 
we interpolate at a point 0 by means of a piecewise cubic Lagrange interpolation 
polynomial such that (on the circle) 

0,-1 <0 < <0?j+ < 0+2. 

This interpolation operator will be called 113. 

LEMMA 3.7. Assume 

(3.2) 0 max . - 
jk=ji ok - Ok-1 

Then 
5 ~~~~~~~2 

(3.3) -p > 1II31 > 1 + 

Proof. Consider the interpolation polynomial of degree < 3 on the abscissae 

-1/p,, 0,1, 1 + 1/pu with function values -1, 1, 1, -1, respectively. This interpo- 
lation polynomial is a parabola with maximum value 

2(,a + 1) 
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attained at 1/2. By means of the Lagrange form and some rough estimates one 
obtains the upper bound. [1 

Method 3.8. This method is obtained if we use the piecewise cubic interpolation 
operator 13 introduced above. In principle, the method defined by this interpola- 
tion operator is capable of an approximation error of order O(maxj 1j3 - 0+?1 '). 
However, there may be some problem with the quantity flm, cf. (3.3). Without 
additional information about the distribution of the 0j, not much can be said. 

As a fourth example we consider interpolation by the classical cubic spline. In 
this instance, a closed curve, we have a periodic spline. First we give an estimate 
related to the norm of this interpolation operator II. 

LEMMA 3.9. Let 

(3.4) v = max j+ - 

isj Si+ 1- Si 

Then the norm of the spline interpolation operator is bounded by 

(3.5) 1{,I1 < 1 + 3V2. 

Proof. For a simple account of cubic spline interpolation we refer to Stoer and 
Bulirsch [12, Chapter II]. We give a scalar analysis, but the results carry over to 
more dimensions. Let the function values in the abscissae 0j be denoted by fj. 
Step sizes are denoted by hj = 0j - 0j 1, taking into account the identification of 
indices 1 and N + 1. Then, by the formulas given in Stoer and Bulirsch [12] we find 
for the moments Mj the upper bound 

1Mj1 < 12 max i fj 
minj h? 

With these estimates for the moments we may estimate the spline itself. Between 
two successive abscissae the second derivative is a linear function. The moments 
M3 represent the second derivative of the spline in the abscissae. Hence, the second 
derivative on a subinterval [0 , 0j+fi is bounded in modulus by the upper bound for 
the moments. On the subinterval, write the spline as the sum of a linear function 
(piecewise linear interpolation) and a cubic part which vanishes at the endpoints 03 
and j+1 . This cubic part is the solution of a boundary value problem, and as such 
it is easily estimated. The linear part is estimated by the maximum of the modulus 
of the function values. The sum of these two estimates gives the upper bound 

max lfj l + 4 max hj max IM I. 
3 3 3 

This results in the estimate (3.5). Cl 
Observe that the estimate (3.5) involves the global quantity vi, whereas the 

estimate for the norm of the piecewise cubic interpolation operator uses the locally 
defined quantity ,u. Clearly, v ? ,u. In some instances a lower bound for I1, I may 
be obtained rather easily. We give an example. 

Example 3.10. Consider an equidistant mesh with 4M abscissae. On this mesh 
we consider a periodic spline as in Figure 3.1. On each of the subintervals this 
spline is given either by ?qi or by ?V/'. The polynomials Xi and 0i are defined as 
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follows. Let mi be the midpoint of the ith subinterval, and let ( = (x - mi)/h, h 
the mesh spacing. Then, on the subinterval of which mi is the midpoint, 

Xi( 81 - i X, t~(( 43 

When put in the right order with the right sign, these functions define a spline. 
The values at the abscissae are ?1, the values at the midpoints are 0 and ?11/8. 
Hence 11,18 > 11/8 on equidistant abscissae. 

FIGURE 3.1 
Part of the periodic cubic spline of Example 3.10. 

Method 3.11. This is the method obtained by choosing cubic spline interpolation. 
In view of Theorem 2.9 this method is of fourth order. The large norm of the 
interpolation operator may cause some problems, as is the case in Method 3.8. 

The theory of Section 2 explains why these methods give good results for easy 
problems, with nearly equidistant 0j. The methods are perhaps not as robust as 
Method 3.1 or Method 3.3. This may also be true for other higher-order methods, 
e.g., piecewise interpolation by fifth-degree polynomials, B-spline interpolation of 
higher degree, see Schumaker [11]. These interpolation operators are defined by 
means of divided differences, and the divided differences might induce large inter- 
polation operator norms for nonuniform mesh spacings. Observe that we use a 
projection property in the definition of K. So we need the B-spline approximation 
obtained via a projection, cf. Schumaker [11]. 

Let us now apply the methods to simple examples. The first example is given 
by the map (3.1). So the unit circle is an invariant circle. For this map tubular 
coordinates and polar coordinates differ only in a shift over a distance 1 in the radial 
component. We shall compute the constant Cd which relates the tubular distance 
to -y to the radial distance to wy. We do this for infinitesimal deviations from the 
circle, and the result will be denoted by Cd,asymp. Without loss of generality, let 
xC belong to the x-axis. Then the value of Cd,asymp is given by 

1 
(3.6) Cd,asymp = max 

cos(r)~ 
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where the angle of is determined by xC and r as in Figure 3.2. It turns out that 
this maximum can be computed explicitly as a function of xC. Again, the law of 
sines is useful. After some computations the result is 

(3.7) Cdasymp = (1-c 

This result says that Cd is not too large, if xc is not close to -y. 

We are also able to compute the factor kasymp- i.e., the limiting value of the 
factor iC, cf. Assumption 2.8, when the width of the annular neighborhood tends to 
zero. The value of kasymp depends only on xc and i.. It is easily seen that kasymp 
is given by (cf. Figure 3.2 where the situation a = 0 has been sketched) 

kasymp = max lim 11 - 
X11. 7 y is 1x - YJ1 

This limit can be computed by goniometric formulas. We find 

kasymp = max{tC2 cos2(i) + sin2(o)}1/2 

This results in the estimate, cf. (3.6), (3.7), 

(3.8) kasymp = {i2 (1 C- ) +c 

x 

I' A<~~~~4 

AT 0 

T / 

0 x 

FIGURE 3.2 

The correspondence between the r-component of the tubular coordinates, the 0-component of 
the radial coordinates and the angle a for points on the circle -y. 

This implies kasymp < 1 for r, < 1 and 0 < xc < 1, which is a rather satisfactory 
result. It says that Assumption 2.8 is valid in this simple example, provided the 
neighborhood of -w is sufficiently narrow. For annular neighborhoods of -y with finite 
width one may compute k numerically. Here we only mention the result of such 
tests: the asymptotic formula for k is rather accurate for xc not too close to 'y. 

In the numerical example we choose ,c = 4/5 and a = 0.1. In addition, we choose 
(almost) equidistant initial estimates on the circle. However, if xc is not in the 
center of the circle, then the abscissae 03 are not equidistant. Observe that the 
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quantities ,t, cf. (3.2), and v, cf. (3.4), increase if xc moves away from the center 
of the circle. So do the (upper bounds of the) norms of the interpolation operators 
used in Method 3.8 and Method 3.11, respectively. For Method 3.1 and Method 3.3 
the estimate (3.7) for Cdasymp indicates a convergence factor smaller than unity 
for Ixcl < 0.6. For Method 3.8 and Method 3.11 we do not obtain a (predicted) 
convergence factor smaller than unity. 

The estimates for k IIlIm, cf. Theorem 2.9, based on the asymptotic formula (3.8) 
give different results. For Method 3.1 and Method 3.3 we obtain a convergence 
factor smaller than unity for all xc E [0,1). For Method 3.8 and Method 3.11 
the estimated convergence factors are not smaller than unity. For these methods 
(and ,. = 4/5) the norm of the interpolation operator spoils the convergence factor 

Kasymp < 1. 

In the iterative process we compute the norm Ai of the difference of two succes- 
sive iterates (= vertices of polygons). The process stops as soon as Ai < L.OE-08 
and Aji+, < L.OE-08. The convergence factor e is determined from all iterates with 
the property Ai < L.OE-06. In a computer arithmetic of approximately 14 decimal 
digits there are no problems with rounding errors. The initial vertices are on a 
regular polygon with radius 1 with an offset of 5.0E-04 from the origin. Results 
have been computed for discrete values of xc at the points i/100, i = 0,1.... For 
Method 3.11 convergence has been obtained for 0 < xc < 0.91, for Method 3.8 
the range was 0 < xc < 0.84, for Method 3.1 the range was 0 < xc < 0.99, and 
for Method 3.3 the range was 0 < xc < 0.97. The numerical estimates for a are 
sketched in Figure 3.3. The results for Method 3.1 and Method 3.3 are almost iden- 
tical; that is why the results for Method 3.3 are not shown. This experiment for a 
very simple problem indicates the different behavior of Method 3.8 and Method 3.11 
in contrast to the two other methods. Method 3.8 does not converge as rapidly as 
the low-order ones, at least not for xc > 3/5. Method 3.11 does rather well as com- 
pared with Method 3.8, at least in this simple example. Also, the results indicate 
that the estimates of Section 2 are too pessimistic. 

TABLE 1 

Results for the map (3.1) with ic = a = 0.1. The table gives the error in the 
approximation for various values of N and the order of accuracy. 

N Method 3.1 Method 3.3 Method 3.8 Method 3.11 

20 1. 190E-02 2.387E-03 2.413E-04 1.162E-05 
40 3.163E-03 9.391E-04 2.492E-05 2.079E-06 
80 6.809E-04 2.900E-04 2.118E-06 2.057E-07 

160 2.116E-04 9.719E-05 1.896E-07 2.078E-08 
320 1.894E-05 9.449E-06 4.367E-09 1.967E-10 

P 2.25 1.92 3.85 3.83 
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Method 3.1, Method 3.8 and Method 3.11 do not give the exact solution for 
this problem unless xc = 0. For xc = 1-, i = 0.1, a = 0.1 we compute the 
error in the vertices as the maximal distance to the unit circle. The results are 
given in Table 1. The order of accuracy p may be estimated by plotting the results 
on a double logarithmic scale. The order is given in the bottom line of Table 1. 
These order results are more or less in agreement with the theoretical prediction. 
The rather good agreement is somewhat surprising, since we have no asymptotic 
expansion for the error (at least not for Method 3.3). 

As a second example we consider the delayed logistic map 

(3.9) 4P((r to) = (o A r/(1 - 0) - 

This map has been investigated in great detail by Aronson et al. [1]. For A > 2 
there is an attracting invariant curve, at least until A - 2.20. For A = 2.11 we apply 
the four methods of this section to this problem. The invariant curve is convex and 
smooth for this parameter value. The source in the interior of the curve is the 
point (ar, a), where or = (A - 1)/A. We choose xc = (a, a). For all four methods we 
use the same initial guess. This initial guess is in fact a good approximate to the 
curve, with nicely distributed vertices. For this good initial guess the four methods 
converge. We use I1 instead of 41 itself. By inserting new vertices in the middle 
of line segments we are able to double the number of vertices without changing the 
shape of the mesh, i.e., without changing the distribution of the angles 0j over the 
circle. In this way we double the mesh in Table 2. 

TABLE 2 

Results for the delayed logistic map (3.9) with A = 2.11. The table gives the 
error for various values of N. The error is measured as explained in the text. 
The last line gives the observed order of accuracy. 

N Method 3.1 Method 3.3 Method 3.8 Method 3.11 

36 4.385E-04 1.725E-03 1.023E-04 1.250E-05 
72 1.325E-04 3.359E-04 6.450E-06 1.395E-07 

144 3.004E-05 9.415E-05 3.209E-07 2.826E-08 
288 8.480E-06 2.137E-05 1.713E-08 2.363E-09 

P 1.92 2.08 4.20 3.94 

We compute points on the curve -y as follows. We need these points for estimating 
the approximation error. First, from the convergence of Method 3.3 for the invari- 
ant curve of q~l, we find a convergence rate of approximately 0.5. This means that 
the attraction factor X. is approximately 0.51/11 0.94. Hence, for a point within 
a distance of 0.1 from the curve, the 900th iterate is within a distance of 6.5E-26 
from the curve. That is, in exact arithmetic. In the presence of rounding errors we 
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expect that the distance to the curve is of the order of the machine precision. The 
error in the position on the curve may build up, but that is of no interest in the 
present discussion. Hence, if we start with a point x0 almost on the curve, then 
the points xj = 413xo, j = 971, .. . ,1000 form a set of thirty points on the curve, 
within working precision. We now estimate the error in the results by computing 
the maximal radial distance from these thirty points to the approximating curve. 
This is the error mentioned in Table 2. The order of accuracy agrees quite well 
with the theoretical order of accuracy. 

Finding an initial guess is somewhat more difficult for Method 3.8 and Method 
3.11 than for the simpler ones. However, once a good initial guess is obtained, path- 
following methods combine quite well with each of the four methods. For example, 
increasing A by 0.02 at a time, a solution for A = 2.19 is easily obtained for Method 
3.11. See Doedel and Kernevez [4] and Rheinboldt [10] for efficient path-following 
techniques. A similar observation can be made for a nonlinear recurrence relation 
mentioned in Koqak [8] (the difference equation quad 2). Without a good initial 
guess, a method like Method 3.11 does not converge. But with a good guess, the 
method converges and the results are rather good, much better than the results for 
the second-order methods. 

Meth.3.1 - Meth.3.8 ............. Meth.3.11 

0 

t I I I I - 

0.5 0.6 0.7 0.8 0.9 1.0 

XC 

FIGURE 3.3 

Results obtained for the map (3.1) with ,c = 0.8, a(x0.1. The value of xc is shown on the 
horizontal axis, the rate of convergence e is shown on the vertical axis. For 0 < xc < 2 the 
observed rate of convergence is 0.8 for all three methods. The results for Method 3.3 are almost 
identical to the ones shown for Method 3.1. 
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0.0 0.2 0.4 0.6 0.8 1.0 

FIGURE 3.4 

Invariant curve for the delayed logistic map (3.9) for A = 2.11. The c-axis is the horizontal 
one. The black dots on the curve are the points in which the error in the radial direction of the 
methods is measured. The point in the interior is the source (= xc). 
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